
JOURNAL OF MATERIAL SCIENCE 28 (1993) 4762-4766 

On the fractal dimension of fracture surfaces 
of concrete elements 
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The problem of the relation between the fractal dimension of a fractured surface and the fracture 
toughness expressed by the stress intensity factor is investigated. The theoretical conditions for 
such assumptions are discussed. Collected experimental results and new tests performed 
onconcrete specimens subjected to Mode II fracture seem to confirm that relation within the 
scope of materials tested and with certain necessary restrictions. 

1. The fractal dimension of natural lines 
and surfaces 

The development of the fractal characterization of 
irregular lines and surfaces was initiated by two books 
by Mandelbrot [-1, 2-], who introduced the fractal 
concept to many fields of the science. 

Man-made objects have in most c0ses contours and 
surfaces that are linear or curvilinear, corresponding 
to Euclidean geometry in which points, lines, surfaces 
and volumes have topological dimensions represented 
by integers: 0, 1, 2 and 3, respectively. However, natu- 
ral objects like coastlines, clouds and rock surfaces are 
irregular and composed of "mountains" and "valleys". 
It is easy to observe that at higher magnification 
further families of "mountains" and "valleys" appear. 
The effective length of such an irregular line and the 
effective area of an irregular surface seem to be related 
to the magnification and therefore cannot be deter- 
mined in an objective way. At the discontinuities these 
curves and surfaces are non-differentiable. 

The word "fractal" has been proposed by Mandel- 
brot [-1] together with fractal dimension D which 
characterizes the irregularity of the fractal objects. The 
lines have non-integer values of D between 1 and 2. 
The irregularity of surfaces is expressed by their fractal 
dimension varying between 2 and 3. The more irregu- 
lar is the object the higher is its fractal dimension. The 
fractal dimension exceeds the Euclidean one. 

The fractal dimension is defined by the relation 
corresponding to a segment of a line from which the 
fractal line is generated: 

lnN 
D - or N = (1/r) D 

In(I/r) 

where N is the number of sub-parts for which the 
initial segment of unit length is divided at each step 
and 1/r is the scaling factor, r being the length of each 

sub-part. The generation of two simple fractal lines is 
shown in Fig. 1. 

The generation of a fractal line may be repeated 
indefinitely and the total length of the line is expressed 
as a function of r and D: 

L = Lo r-(D-1) (1) 

where Lo is the length of the initial straight segment. 
The total length increases indefinitely with decreasing 
r, e.g. for D = 1.5 it is as given in Table I. 

A more general relation for lines and surfaces has 
the form 

L = L o E - ( n f -  D) (2) 

where L and Lo are the total and initial length and 
area, respectively, E is the scale of measurement, and 
Df and D are the fractal and topological dimensions. 

Lo Lo 
i i i i i i 

(a) (b) 

Figure 1 Generation of two examples of simple fractal lines. (a) 
N=4, r=  1/3;D=ln4/ln3= 1.261 86.(b) N=8, r=  1/4;D=ln 
8/ln 4 = 1.5. 
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T A B L E  I Fractal line length (L) for D = 1.5 

r 1 0.5 0.1 0.01 0.001 0.0001 

L 1 1.41 3.16 10.00 31.62 100.00 

Natural lines and surfaces with apparent irregulari- 
ties are not necessarily fractal objects with a given 
fractal dimension. The necessary requirement is self- 
similarity, which means that within certain limits of 
magnification a larger region of the object should 
appear exactly or approximately similar to a smaller 
region regarded with appropriate magnification. In 
natural objects the self-similarity is not extended over 
all ranges of magnification: below and above certain 
levels the object may have not a fractal character. The 
reason is obvious: the nature of the objects recognized 
at different scales may be completely different. 

The fractal dimension as a quantitative measure of 
the irregularity of the objects may be applied in vari- 
ous fields of materials science. Mandelbrot et al. [-3] 
have shown self-similarity over two orders of magni- 
tude for fracture surfaces of tempered steel and 
alumina. They also proposed a linear relation between 
the fractal dimension and fracture toughness for these 
materials. 

2. The fractal dimension applied in the 
analysis of concrete elements 

The irregular shape of cracks and fracture surfaces of 
cement-based composites was at the origin of the 
question whether they may have fractal dimensions 
like rocks and other natural objects. The application 
of fractal analysis is mostly aimed at a better under- 
standing of the fracture mechanics of these materials 
by possible quantification of the fracture surface 
roughness. 

There are many papers in which correlations be- 
tween the mechanical properties of solids and fractal 
dimensions of fractured surfaces were investigated 
within different orders of magnitude of scale, and a few 
investigations were performed on concrete elements. 
Winslow [-4] examined fracture surfaces of cement 
paste and has shown their fractal character, indicating 
its limits. Also a relation between water/cement ratio 
and the roughness of surfaces of fractured specimens 
was observed. Saouma et al. [5] studied concrete 
specimens with different maximum aggregate grain 
size from 20 to 75 mm, representing concretes used for 
the construction of ordinary structures and dams. 
They also observed that the fractal characters of con- 
crete surfaces examined were without significant dif- 
ferences in fractal dimension for different aggregates. 
This last conclusion was attributed to the identical 
origin of all aggregates used in the specimens tested. 

The roughness of a fracture surface is studied along 
a system of profiles. Their orientation is of great im- 
portance. In the investigations reported by Saouma 
et al. [5] the measurements were made with a specially 
designed profilometer which was displaced over the 
fracture surface along two families of orthogonal lines. 
Another technique is based on the execution of a poly- 

met replica of the fracture surface. The replica is then 
sawn into slices by parallel sections. The contours 
obtained are called "fracture profiles" and are sub- 
jected to close examination and analysis: the length of 
each fracture profile is measured with a varying step 
r and the results are plotted in the logarithmic system 
of coordinates using Equation 1 in the form 

logL = logLo + (1 - D) logr 

If the result obtained is approximately a straight line, 
it means that the fractal dimension (equal to its slope) 
is constant over certain levels of magnification. This is 
called the "vertical section" method. Another ap- 
proach called the "slit-island" method is explained 
among others by Pande et al. [-6] and was used for the 
analysis of fracture surfaces of metallic specimens. 

To obtain a statistically reliable result of the ana- 
lysis of a fracture surface by the vertical section 
method a large number of sections should be exam- 
ined. Parallel sections executed, for example, along 
rectangular coordinates may give information about 
possible orthotropic properties of the fracture surface. 
In some cases random sections oriented at different 
angles may be studied. 

The characterization of the fracture surface after the 
analysis of fracture profiles is based on an assumption 
that having determined the profile roughness para- 
meter 

RL = L / L o  

it is possible to define the fracture surface roughness 
parameter 

Rs = S/So 

where Lo and So are the apparent projected length and 
area, respectively, and projection is on the mean or 
average topographic direction or plane (Fig. 2). There- 
fore, a relation of the following type is needed: 

Rs  = R L 0  (6) 

where RL~ is an expected or average value of the 
product and 6 is the profile structure factor which 
expresses the position and orientation of each elemen- 
tary segment of the fracture profile analysed. 

Equation 6 is general and is not based on any 
assumption concerning the nature of the surface 
examined. The values of R c and ~ are independent 
and should be obtained in a number of vertical sec- 
tioning planes differently oriented to assure the statist- 
ical representivity of the product; see Gokhale and 

.:7 !-. :i:.l!7:;!::.: ::7::.":.1: :::-;: " 

Figure 2 Symbols for irregular lines and surfaces with respect to 
their projections. 
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Drury [7], where an efficient sampling procedure is 
proposed for estimation of fracture surface roughness 
from the measurements. The profile roughness para- 
meter RL alone may not be correlated with the frac- 
ture toughness, and any correlations observed may be 
misleading [8]. 

However, an approximate formula was proposed by 
Underwood and Banerji [9] with the form 

4 
Rs = - ( R L  -- 1) + 1 (7) 

TC 

which provides, according to these authors, the best fit 
to experimental data. When comparing Equations 
6 and 7 the following remarks should be made: 

(i) Rs is an important quantity with respect to its 
possible relation to the fracture properties of the ma- 
terial, but it is inaccessible by simple experimental 
measurements; 

(ii) RL is easy to determine experimentally, but its 
relation to the surface roughness as given by Equation 
7 is only approximate in view of Equation 6; and 

(iii) Equation 7 has been proposed and discussed for 
metallic specimens and its application to cement- 
based materials has not yet been verified. 

It should also be observed that RI~ does not character- 
ize completely and without ambiguity even a profile: 
different profiles may have identical values of RL (e.g. 
Fig. 3). Also, two fracture surfaces with the same value 
of Rs are not necessarily similar. 

Calculation of the fractal dimension D as well as of 
the fracture surface roughness parameter  Rs is an 
interesting attempt to quantify the irregularities of 
natural fracture surfaces. Its application to the frac- 
ture mechanics of cement-based composites is promis- 

RL = ~/2 r = 112 

(n - 2)112 
I ] I 1 I I 

~ V ~ ~ ~ % ~  ~/4 

} L' = 6 units I 

Figure 3 Three different profiles having identical values of the pro- 
file roughness parameter R = ~/2 (after [10]). 

ing. However, the quantitative conclusions from such 
calculations have only relative importance and should 
be limited to materials of the same kind. For example, 
the roughness of the fracture surfaces of a series of 
mortar  specimens with variable w/c, age or grading 
curves may correctly reflect their fracture toughness. 
In contrast, any comparison between the fractal 
dimensions of cement pastes and concretes may give 
misleading results because of the different nature of 
these materials. 

The question of whether there is a general and 
reliable relationship between the fractal dimension of 
a surface and the fracture toughness of the material 
has been considered by several authors, but their 
answers are not completely concordant and require 
further investigations. The results for concrete ele- 
ments fractured under combined compression and in- 
ternal pressure [5] are compared in Table II with 
those obtained for other materials. The results show 
a relation between the fractal dimensions of the frac- 
tured surfaces and the critical values of the stress 
intensity factors K~c determined experimentally. The 

T A B LE I I Mechanical properties and fractal dimensions for different materials 

Authors Material and test D KIo (MN m-3/2) 7(J/m-2) Temperature 
(oc) 

Saouma et al. [53 

Underwood and Banerji [11] 

Mecholsky et al. [12] 

Anstis et al. [13] 

Neilson [14] 

Hellmann [15] 

Mecholsky [16] 

Mecholsky and Mackin [17] 

Concrete (uniaxial compression) 1.07-1.12 

Steel AISI 4030 (bending) 1.085 - 

1 . 0 9 1  

1 . 0 9 0  

1.072 
1.084 
1.079 

Alumina (bending) 
UCC 1.15 2.5 
Lucalox 1.31 4.0 

Alumina (tension) 
AD 90 1.21 2.9 
AD 999 1.31 3.9 

Aluminosilicate GA TECH 1.18 2.2 
(bending) 
Alumina (tension) 

WESGO (A 1500) 1.20 3.6 
GEND 1.23 3.9 

Glass-ceramics (tension) 
Zinc-silicate 1 1.05 1.6 
Zinc-silicate 2 1.09 1.8 
Zinc-silicate 3 1.11 2.2 
Lithia borosilicate 1.18 2.7 

Ocala chert (bending) 1.32 1.55 
1.26 1.46 
1.24 1.25 
1.15 1.05 

2O 

11 
19 

23 
27 

22 
22 
27 
40.5 

200 
300 
400 
500 
600 
700 

20 
300 
400 
500 

4 7 6 4  



observed relation may be expressed as follows: in 
a group of similar materials, those with higher values 
of K~o have a higher fractal dimension for their frac- 
ture surfaces. This may be considered as an indication 
that the fractal dimension of materials reflects their 
fracture toughness. The results in Table II are incom- 
plete and do not allow for more detailed discussion. As 
mentioned above, it is incorrect to compare mechan- 
ical data and fractal dimension for different materials, 
e.g. no conclusion may be formulated from the fact 
that alumina and Ocala chert have similar values of 
D and different values of K~. Duxbury [18] indicated 
that the correlation between the fracture toughness 
and fractal dimension may be either positive or nega- 
tive, and some additional specifications as to the ma- 
terials compared are necessary before the formulation 
of conclusions of a useful character. In concrete speci- 
mens with an important pore system a negative cor- 
relation might be expected, and positive for a system 
of dispersed hard grains. The second possibility is 
typical for ordinary structural concretes. 

The tests of concrete specimens subjected to Mode 
II fracture were aimed at a further investigation of 
relations between fractal dimension and roughness of 
the fracture surface after Mode II crack propagation. 

3. Descript ion of tests and 
measurements  

The specimens were cast from concretes made with 
three kinds of coarse aggregate: crushed basalt, river 
gravel and crushed limestone. Other specimens were 
prepared with cement mortar and paste. The speci- 
mens were subjected to shearing as shown in Fig. 4. 

The values of Knc were calculated according to the 
formula proposed by Watkins [19] : 

5.11Per 1/2 K,,c- ~ (rca) (8) 

where Per is the value of the critical load P which 
initiated the crack propagation, b is the ligament 
depth, a is the notch depth and B is the specimen 
width (see Fig. 4 and Brandt and Prokopski [20]). 

The fractured surfaces were used to prepare replicas 
with acrylic resin. The replicas were sawn into slices as 
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Figure 4 Specimens subjected to shearing in Mode II. 

shown in Fig. 5. Then, the profile lines of each replica 
were subjected to computer image analysis in a Magi- 
scan (Joyce Loebl) and the length of each profile line 
was measured with varying steps equal to 0.45, 0.30, 
0.15, 0.075, 0.05 and 0.0375 ram. The image of a profile 
line was transferred to a monitor and covered with 
a system of orthogonal lines giving 512 x 512 pixels. 
Modification of the scale of the profile lines caused 
a modification of the steps. To measure the length of 
the profile lines an erosion function was applied of 
unit width equal to 1 pixel. 

Mean values from four measurements of profile 
lines were used to calculate the fractal dimension from 
Equation 1. Specimens of dolomite and gravel con- 
cretes were selected for fractal analysis from specimens 
with different values of K,c. 

4. Test results and discussion 
The results of tests are presented in Fig. 6 and Table 
III. The following conclusions may be drawn from the 
tests. 

Sectioning plane 
esin replica 

I ~  ~ T M e a n  

~ L  4 
Figure 5 Preparation of replicas for analysis of profile lines. 

line 

2 

1 I 
0.03 0.1 0.3 0.4 0.5 

in r 

Figure 6 Fractal plots for profiles of specimens with different mater- 
ials: (11) cement paste, ((2)) mortar, (,i,) dolomite concrete 1, 
(Z]) dolomite concrete 2, (x )  basalt concrete, (<)) gravel concrete 1, 
(A) gravel concrete 2. 

T A B L E  I I I  Fractal dimension and fracture toughness 

Material D Knc (MN m-3/2) 

Cement paste 1.033 1,60 
Mortar  1.060 3.37 
Dolomite concrete 1 1.050 3.90 
Dolomite concrete 2 1.054 4.36 
Gravel concrete I 1.038 2.74 
Gravel concrete 2 1.051 3.40 
Basalt concrete 1.043 5.16 
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The fracture surfaces are fractal objects within the 
scope of the scales analysed and are characterized by 
fractal dimensions. The coefficients of exponential cor- 
relation for the lines in Fig. 6 are close to 0.99. 

In this analysis it has been assumed that the profile 
lines analysis allows one to deduce the fracture surface 
roughness. It is therefore expected that the approxim- 
ate Equation 7 may be used as characteristic for the 
comparison of surfaces of different materials, belong- 
ing however to the same group. 

The relations between values of D and Kic confirm 
the previously mentioned conclusion. For Mode II 
fracture in cement-based composite materials it has 
been observed that higher fracture toughness is ac- 
companied by higher values of fractal dimension of 
the fracture surfaces. 

The differences in fractal dimensions for concrete, 
mortar and paste specimens may be explained by the 
influence of the smallest grains of sand and cement, 
which have a completely different nature from the 
composite materials. 

The results obtained do not furnish any quantita- 
tive relations for practical applications and it is not yet 
possible to design cement-based composites with 
a given fractal dimension for a required fracture 
toughness. It seems, however, that new evidence has 
been obtained to support the hypothesis that the frac- 
ture surfaces of concrete-like composites are fractal 
objects. It is expected that this hypothesis may be of 
some practical importance in the future after further 
tests. 
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